Accreditation- Evaluator’s View
• Why Accreditation and What is it?
• What do we evaluate?
• Against what criteria?
• Why & What of OBE?
• Evidence and its role.

• Evaluators Plays a Key role.
OBE - Accreditation

Basic Issues
Qu. What is Accreditation?
And, What does it do?
It Provides Assurance about Program Quality*
Qu. Who are these Stakeholders?

- Students and their Parents
- Institutions
- Industry
- Faculty
- Govt.
Accreditation

• What accreditation is NOT?
 1. Not a ranking procedure (Gold, Silver, 1,2,3,..)
 2. Not an Investigation (There has been no complaint)
 3. (Should not be), A Regulatory Process.
 4. Not Even an Audit

Accreditation is not a ranking system.
ABET does not rank programs in any way.
What is it then?

• **It is a Process by which:**

 1. *The Institution being looked at is given a SEAL of approval by stakeholders in its activity - as meeting their expectations.*

 (Stakeholders: Students, Govt., Industry, Faculty,...)
Truly, the Processes discussed in this presentation are of use to the Institution-Accreditation or Otherwise
Key Terms

- Program Educational Objectives, **PEO**
- Graduate Profile, &
- Program Outcomes, **PO**
- Accreditation Criteria
- Course Outcomes, **CO**
- Assessment
- Evaluation
- *We will define and discuss all these*
Program Educational Objective-PEO
Program Educational Objectives Essentially Answer the Question: Why does the Program exist in the first place?

It has to be answered by the management in Consultation with all the Stakeholders!
Qu. Employment Scenario?

Shadow of the IT!
STARTING POINT
NBA’s Accreditation Process
Accreditation Model ...

• Modern Trend: Objectives / Outcomes*
• Outcomes are Measurables
• Detailed Evaluation Guidelines – Allows the Institution to Assess itself (and Change)
• Assesses in a two tier system. One more suitable for the autonomous, other for the affiliated {Your role and tasks change depending on the tier}
• Infrastructure part plays a much smaller role
SAR Structure

• **Institutional**: Infrastructure, Finance, Admissions, Governance, Faculty, etc

• **Department/Program** Related

• **Academics**: Curriculum, Objectives / Outcomes*
Accreditation Process Flow

- Institution- Complete the SAR
- Institution- Evaluate yourself and Bridge Gaps that you find *(Leads to Improvements in the Institution’s Functioning without...)*
- Pre-qualifiers – Go– No Go
- **Evaluators**- Initial Assessment based on SAR and Observations thereon
- Visit – Judgments Based on **Evidence**
Accreditation Criteria-
On Which, to make the Judgment
Accreditation Criteria-NBA

Criterion1: Vision, Mission and Program Educational Objectives
Criterion2: *Program Outcomes*
Criterion3: *Program Curriculum*
Criterion4: Student Performance
Criterion5: Faculty Contributions
Criterion6: Facilities and Technical Support
Criterion7: Academic Support and Teaching and Learning process
Criterion8: Governance, Institutional Support and Financial Resources
Criterion9: Continuous Improvement
How to make the judgment?

As dictated by the Accreditation Criteria-Slide 18
SAR-Evaluations

• Vision and Mission
• Program Outcomes (PO)
• Course Outcomes (CO)
• Consistency and Interactions Amongst These- Matrices
Process Structure (*Skeletal*)

- **Program Outcomes/Graduate Profile** (To be achieved)
- **Teaching/Learning:** Curriculum, Faculty, Assessment & Evaluation (Design and implementation component)
- **Assessment and Evaluation**
 - Attainment of *Graduate Profile*
 - Revise?
- **Accredit?**
Graduate Profile & Washington Accord
Graduate Profile

• Profile of the Graduates- **Target**
• The Profile should (and does) meet requirements of all the Stakeholders.
• **AND**
• Is in line with the Profile as defined by the WA
• **Defining this is the Starting Point**
Why the NBA’s POs are-
What they are?
WA – Graduate Attributes and NBA- Program Outcomes

<table>
<thead>
<tr>
<th>Washington Accord Attributes</th>
<th>NBA Program Outcomes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Engineering knowledge, Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.</td>
<td>1. Engineering knowledge, Apply the knowledge of mathematics, science, engineering fundamentals, and engg. specialization to the solution of complex engineering problems.</td>
</tr>
<tr>
<td>2. Problem Analysis, Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences</td>
<td>2. Problem Analysis, Identify, formulate, research literature, and analyze engineering problems to arrive at substantiated conclusions using first principles of mathematics, natural, and engineering sciences.</td>
</tr>
</tbody>
</table>
Crux of the Matter – Program Outcomes
NBA-Program Outcomes

1. **Engineering Knowledge,**
2. Problem Analysis
3. **Design/development of solutions,**
4. Conduct investigations of complex Problems,
5. **Modern tool usage,**
6. The engineer and society,
7. **Environment and sustainability,**
8. **Ethics,**
9. Individual and team work,
10. Communication,
11. Project management and finance,
12. *Life-long learning*
POs- Working Details

1. Definition and Validation of Course Outcomes and their mapping to Program Outcomes

2. **List all** the Course Outcomes (COs) and Program Outcomes (POs)

3. List Assessment tools employed for evaluation of level of attainment for COs (and evidence for this)

4. Establish Attainment Levels for the POs

5. **Indicate processes employed.**

6. *This and the next slide* {It should also be in the SAR}
Evaluation of the attainment of the Programme Outcomes

1. Results of evaluation of each PO. (to be recorded)

What are the levels of attainment?

1. How the results of evaluation were used for curricular improvements?

(Continuous Improvement -- Criterion-9)

{SAR Again!}
We Examine only Two Criteria

Criterion 2: Program Outcomes
Criterion 3: Program Curriculum
Role of the two criteria

- Program Curriculum
- Program Outcomes

- Curriculum and the Teaching/Learning processes are the basis on which the program is built

- Attainment of POs indicates that the job is well done
Curriculum
Curriculum

Curriculum, Assessment and Evaluation are the major tools by which Program Outcomes are attained. We should look at all of these together. *These need to be designed well.*
Structure of a Typical Engineering Curriculum

1 Contents of Basic Science, Humanities, and Program Specific Courses – Core, Elective \{Balanced?\}

2 Content Delivery

3 Laboratory Work

4 Project Work
Qu. Will We be able to Attain POs Under the Curriculum?
Participants in Curriculum Review/Design More True for Tier-1, But …

- Faculty {Team}
- Industry
- Academics from Peer Institutions {Very Desirable}
- Students and Alumni
- Academic Bodies
Here the entire responsibility rests with the Institutions
Framework

PEO

Program Outcomes

Curriculum & Teaching, Learning

Course Outcomes
Curriculum Design Flow

- Define PEOs
- Place Starting Design alongside NBA’s Program Outcomes.
- Can you **cover All POs** within the Credit Limit Requirements?
- **If Yes, then** Sequencing Requirements? **Else,**
- In a Few iterations a Solution should emerge

For Evaluators – Records?
Sample Syllabus

Course: Electrical Circuits and Network Theory. Offered in either 2nd or 3rd semester to students of Electrical Sciences. Credits: (Typical) 3-1-0. Course is Compulsory. Course Objective: To prepare a student to take courses normally offered in subsequent semesters, like: Electronic Circuits, Signals and Systems, Advanced Electronics, etc.
Syllabus: The circuit concept as an approximation to a physical system \textit{modeling, Application of laws of physics (PO 1)}. Kirchoff’s Laws, voltage and current sources, Network equations, use of source transformations, Loop and Nodal analysis, Matrix representation of circuit equations and their solutions \textit{Apply knowledge of mathematics (PO1)} Continued…
Transient response, solution of differential equations with constant coefficients, initial and final conditions, time constant, its physical significance, and use in solving engineering problems \(\text{PO 2 particularly, switching circuits}\). Use of Laplace transform in circuit analysis \(\text{again PO 1}\)

Two-port networks, two-port parameters \(\text{necessary for all the electronics systems that would follow}\), sinusoidal steady state analysis and frequency response

Use of computers for solving large problems \(\text{PO 5}\)

Text books: 1. Van Valkenburg, Network Analysis, 3rd Edition, PHI. \(\text{For an 8 credit advanced course}\)
2. V Del Toro, Electrical Engineering Fundamentals, 2nd Edition \(\text{For a 6 credit standard course}\)

Course Outcomes: PO 1, PO 2, PO 5

Curriculum

Teaching/Learning/Assessment/Evaluations

Course Outcomes

Program Outcomes

If True, Done
Broad Outline

Mathematics, Physics, Basic Engineering Sciences, Humanities, Communication

Core (Compulsory) Electrical Engineering Courses

{Electives}

Type 1 Type 2 Type 3 Type 4

Projects, Internships, Assignments, ..
Typical Core Composition for EE

- Mathematics – 4/5 courses
- Physics – 3/4 Courses
- Chemistry 1/2
- Biology (?) ≥ 1
- Humanities and Social Sciences 3/4
Maths: Calculus (1/2), Linear Algebra, Discrete Maths, Complex Variables

Physics: General Physics, Electricity & Magnetism (Adv), Modern Physics,
COFFEE BREAK?
NBA’s Program Outcomes

They are interesting!
NBA-Program Outcomes

1. Engineering Knowledge,
2. Problem Analysis
3. Design/development of solutions,
4. Conduct investigations of complex Problems,
5. Modern tool usage,
6. The engineer and society,
7. Environment and sustainability,
8. Ethics,
9. Individual and team work,
10. Communication,
11. Project management and finance,
12. Life-long learning
PROGRAM OUTCOMES – PO

• Have to be understood
• Some Difficult to Attain
• Also, Difficult to Assess and Evaluate
• We examine all these aspects
1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and engg. specialization to the solution of complex engineering problems.

2. **Problem analysis:** Identify, formulate, research literature, and analyze engineering problems to arrive at substantiated conclusions using first principles of mathematics, natural, and engineering sciences.

3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components, processes to meet the specifications with consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems:** Use research-based knowledge including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, *safety, legal*, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9. **Individual and team work:** Function effectively as an individual, and as a member or leader in teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively with the engineering community and with society at large. Be able to comprehend and write effective reports documentation. Make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to one’s own work, as a member and leader in a team. Manage projects in multidisciplinary environments.

12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
Crux of the Matter – Program Outcomes
What is True for Evaluators is True for Authors of SAR
Two Terms - Assessment & Evaluation
Assessment

It is one or more processes that identify, collect, and prepare data to evaluate the achievement of Program Outcomes and program educational objectives.

Important for both, SAR and the Evaluators
Evaluation

These are processes for interpreting the data and evidence accumulated through assessment practices.

Evaluation determines the extent to which POs or PEOs are being **achieved**, and results in decisions and actions to **improve** the program as also for accreditation.
Attainment of PO1 to PO4

Evaluator’s View
Presentation

Part A: Evaluation Processes

Part B: Evaluation

Part C: Examples
PART A: Evaluation Processes
Presentation Flow

Meaning and Purpose of POs \{slides 60-65\}

Determine the set of COs related to POs using CO-PO Matrix \{slide 66\}

Analysis of COs \{slides 67 & 68\}

Attainment of COs & then POs \{slides 69-73\}
Statements of the POs- From SAR
PO 1 and PO 2

• **PO1. Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and engineering specialization to the solution of complex engineering problems.

• **PO 2. Problem analysis:** Identify, formulate, research literature, and analyze engineering problems to arrive at substantiated conclusions using first principles of mathematics, natural, and engineering sciences.
PO 3 and PO 4

- **PO 3 Design/development of solutions:** Design solutions for **complex engineering problems** and design system components, processes to meet the specifications with consideration for the public health and safety, and the cultural, societal, and environmental considerations.

- **PO 4. Conduct investigations of complex problems:** Use research-based knowledge including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
Why place these four POs in one Basket?

• The Statements show that one part of (complex) Engineering Problem CEP is common to all.

• Though, individually each PO deals with a different aspect of CEP. Recognizing this commonality makes the discussion easier.
CEP- PO1 to PO4 & The Elephant
Complex Engineering Problem-CEP

1. Problems not the kind generally encountered at the ends of text book chapters. (These often test if the contents of the chapter have been understood)

2. These are problems that have not been completely framed and leave at least a few* choices for the student to make.

3. Problems may require use of laws of physics, or bring in some mathematical tools in which the problem can be framed.
The different aspects of CEP

• Application of Mathematics and sciences – PO1
• Identify and Research to Solve – PO 2
• Design and Development of Solutions – PO 3
• Conducting Investigations and Research – PO 4
Factors We Examine

• Assessment: \{ Information and Evidence for Evaluation of attainment \}

• Evaluation: \{ From the evidence making judgments on attainment levels \}

• We examine both the factors from procedural and evidence interpretation aspects
The First Step

• Towards Assessment: { We recognize that POs are attained through the COs. So we determine the corresponding set COs. These COs in turn lead us to places where we find information and evidences }

• This step is pictured in the next slide. We will need the CO-PO matrix for this. It is in the SAR
Mapping from the CO-PO matrix
\{\textit{from SAR}\}

\begin{itemize}
 \item PO 1
 \item PO 2
 \item PO 3
 \item PO 4
\end{itemize}

\begin{itemize}
 \item \textbf{Set of }\{\textbf{COs}\}
 \item \&
 \item {\textit{Associated set of Courses}}
\end{itemize}
Every Course Leads to Some Outcomes. All the courses must cover the stated list of outcomes. One way of verifying this to prepare a match matrix as shown below. In the table below * could also be a number- typically in (0,1) indicating level of attainment.

<table>
<thead>
<tr>
<th>Course</th>
<th>PO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 111</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>EE 212</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>HS 101</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
Every Course Leads to Some Outcomes. All the courses together must cover all the POs (and PSOs). For a course we map the COs to POs through the CO-PO matrix shown below. Assume that it is for a course EE111.

<table>
<thead>
<tr>
<th>CO</th>
<th>PO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 1</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>CO 2</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>CO n</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
Are the COs well defined?

- CO Analysis-
- How well do the CO statements match with the PO statements?
- Very often a part of a PO is embedded in the CO.
- Else, we **reason** on the degree of match.
- contd
Answer to this question could be in terms of degree of match such as:

(a) Excellent / 4
(b) Good / 3
(c) Fair / 2
(d) Little / 1

{To be recorded for all the COs. Examples follow}
Assessment Procedure

• Step 1 - Collect information from question papers, assignments, tutorials, answer scripts, etc.

• Step 2 - SAR might also furnish projects {mini and major} and Lab work as evidence towards attainment.

• The two steps together give assessment.
- Step 3: Analysis of questions in examinations {In-semester for Tier-2}, tutorials, assignments, etc*. will point to those questions that are devised to evaluate attainment of COs.
- Step 4: An examination of the relevant answer scripts along with the extent of relevance of the questions with the COs will reveal the actual level of attainment. {Steps 3 and 4 are judged by you as the domain expert. The CO Attainment levels need to be determined and recorded in your notes. Some illustrative examples will follow}
PO Attainment

• Establish Attainment levels for all the COs applicable for that course by Inspection of the evidence available for the purpose.
• Then, as per the CO – PO matrix, created for the purpose, map these results into PO attainment levels. \(\Sigma \text{Cumulate} \)
• Continue this with selected set of courses so that attainment levels are established for all POs-PO1-PO4.
Important Sequence of Steps

CO-OK?, (Match with PO)

Question –OK?

Answers/ Evidence-OK

Then, PO attained
PART – B: Evaluation
Let us look at PO 1
Why is PO 1 needed?

• Modern Engineering Practice requires a very good Understanding of Mathematics, Physics, and Basic Engineering Sciences.

• Such an understanding helps in tackling problems encountered in professional practice as well as development tasks that have to be carried out.

• PO 1 essentially proves these abilities.
Our Job as Evaluators is to ascertain whether PO 1 has been attained in the Program
Illustrative Example

• A Course on Basic Electric Circuits has this as: CO1 \(\text{as per SAR}\): Ability to apply laws of Physics through Modeling of Electro magnetic fields phenomenon as lumped parameter circuit elements. \(\text{Leads to PO 1}\)

• In this case the CO-PO matching is very high.

• Search for questions related to this CO \(\text{SAR is also expected to point out such questions.}\)

• An example of such a question follows
Capacitors are of the same value, 1F; Initially, C1 is charged to V volts, and C2 is in a fully discharged state. The switch s closed at t = 0. Determine the energy dissipated in R at t = infinity.
Let us analyze this question

- Does the question require just memory recall? NO!
- Can it be solved by direct application of text book material? NO!
- Does it require you to frame the problem in appropriate context? YES!
- Apply knowledge (maths, science) to arrive at a solution. YES! Laws of conservation of energy and of electrical charges
Implication

• The question is: Is the question appropriate for the CO 1?

• CO1: \emph{as per SAR}: Ability to apply laws of Physics through Modeling of Electro magnetic fields phenomenon as lumped parameter circuit elements.

• Yes, it is indeed.

• Next, we look for attainment.
Assume that a question is Good, then

- We ask the question: Was the CO attained?
- For that, we look into answer scripts.
- We ask: How many of the students:
 - (a) attempted?,
 - (b) understood the question?
 - (c) solved it correctly?
- (a), (b), and (c) together allow us to answer: How well the CO was attained. \emph{Please record your observations and judgment}
Another Example

Course is Electronic Circuits, CO: Apply Knowledge engineering specialization to the solution of complex engineering problems

• Judgment needed:

• (a) Is it a complex problem? {defined in slides 63-64}
• (b) Does the solution require knowledge of engineering specialization?
Complex Engineering Problem-CEP

1. Problems not the kind generally encountered at the ends of text book chapters. (These often test if the contents of the chapter have been understood)
2. These are problems that have not been completely framed and leave at least a few choices for the student to make.
3. Problems may require use of laws of physics, or bring in some mathematical tools in which the problem can be framed.
Tier -1 and Tier-2

For tier 1, (2) could read as- only skeletal details provided in the problem, and student is required make out the rest. Such a problem could require amongst others defining constraints in terms of power, cost, weight, life span, different engineering choices, etc. For such problems, there are, in all probability multiple valid solutions.

Difference between Tier-2 and Tier 1, in this respect, is in the degree of complexity and numbers
A question on Complex Engineering Problem

• Design an amplifier using BJT(s). Given: Signal source: 500mV (peak to peak), impedance 100KΩ; Load: 1KΩ, Output required 1V (peak to peak)

• Problem does not state:
 • (a) What amplifier configuration?
 • (b) Reasoning behind the choice
 • (c) What would be the typical device characteristics you visualize, etc

• For Tier-2 such a question could appear in a home assignment. For Tier-1, it could be design & build
Analysis of the question

The question does not state many aspects like:
(i) What amplifier configuration would be good for the given situation?
(ii) Whether feedback should be applied?
(iii) Answers to these questions require, “knowledge of engineering specialization (Electronics)” {PO 1}
(iv) Attainment to be determined as given earlier
Projects and Assignments

• Projects and Assignments can often lead to attainment of PO 1 and PO 2

• Assessment: In Project Reports, Project Labs., and in the associated Marking Schemes.

• Evaluation will look for the following:
Evaluation of Projects

- Evaluation of Project Topics
- Method of Allotment (if any)
- Progress Seminars (during project execution) - Records of these.
- Evaluation of the state of the project in the final submission {This includes marking scheme used, level of completion, level of understanding in a study project, etc}
Some Points for the Institutions
TYPICAL ASSESSMENT TOOL TYPES:

Direct, Indirect
Assessment and Evaluation

Qu. What is it that we are trying to assess?

Ans. Have the Graduates qualified for the Profession.

But, we assess the students **continually** as they progress through the program!

So, most of the tools used here can be the ones that we use regularly, like: In-Semester exam, End-Semester exam, Tutorials, Quizzes, Assignments, and (may be) some more.
Qu. Then, what has changed?

Ans. What has changed is: Now, we have to make assessments against the POs that we have declared as creating the required profile of the Graduate. Thus Assessment and Evaluation have to address this new requirement (and that is the Catch).

These new needs influence the constructs of assessment and evaluation tools so that claims of COs and POs can be substantiated. {Critical for Tier-1}
Typical Assessment Tools

- Mid-Semester and End Semester Examinations**
- Tutorials*
- Home Assignments*
- Project work- Viva-Voce, Seminars etc.
- Employer/Alumni Feedback
- More
Attainment of Programme Outcomes

1. Illustrate how course outcomes contribute to the POs

2. Explain how modes of delivery of courses help in attainment

3. How assessment tools, used to assess the impact of delivery of course/course content contribute towards the attainment of course outcomes/program outcomes

4. Extent to which the laboratory and project course work are contributing towards attainment of the POs

{ This is for the SAR. All the Evidence- that you put on the Table }
Evaluation of the attainment of the Program Outcomes

While writing the SAR

1. Results of evaluation of each PO. (to be recorded)

What are the levels of attainment?

1. How the results of evaluation were used for curricular improvements?

(Continuous Improvement -- Criterion-7)
To Summarize
Course Outcomes

• What are these?
• Program Outcome is generally a broad statement. For example: . Problem analysis: Identify, formulate, research literature, and analyze engineering problems to arrive at substantiated conclusions using first principles of mathematics, natural, and engineering sciences.
• Not all of these may be reachable in a single course module. A Course Outcome would state the part that is addressed there. Thus,...
Relationship: COs and POs

A CO could be embedded in a PO

Thus,

\{Course Outcomes\} \rightarrow \{Program Outcomes\}
COs AND POs

The 12 POs

{COs} of module/course
THANKS
HAVE A GREAT DAY
POs- Working Details

1. Definition and Validation of Course Outcomes and their mapping to Program Outcomes

2. **List all** the Course Outcomes (COs), Program Outcomes (POs), and Program Specific Outcomes (PSOs)

3. List Assessment tools employed for evaluation of level of attainment for COs (and evidence for this)

4. Establish Attainment Levels for the POs and PSOs

5. **Indicate processes employed.**

6. *{This and the next slide}*
An Example of a Project

A Group Project Assignment: Design a SMPS for 12V, 500 mA

Claimed COs \(*as per SAR\): Team Work, Advanced Electronic System Design, Environment, Ethics.

Assessment: Detailed Project Report, Discussion with the Instructor.

Evaluation of Attainment: (scale of 1, 5)

1. Design basically sound and in working condition, attainment 3
2. Report shows EMI/EMC issues taken into account - Environment attainment 4
3. Report mentions EMI/EMC standards – attainment 5
Evaluation of PO 2

PO 2. **Problem analysis**: Identify, formulate, research literature, and analyze engineering problems to arrive at substantiated conclusions using first principles of mathematics, natural, and engineering sciences.

- **Key words**: Identify, **Formulate**, Research Literature, and Analyze Problems to Reach:
- **Substantiated Conclusions**
Key Words

• A Task is assigned
• Identify: Locate where does the problem lie.
• Formulate: Convert the task into an “Engineering Problem” \{with specifications\}
• Research Literature: Study material relevant to the problem.
• Analyze: Draw meaningful conclusions from the above three.
Assessment Tools

• As the tasks involved are: Identify, Research Literature, and Formulate; such problems would typically be found in: home assignments, mini or major projects, or tutorials. {A problem may have one or more of the above possibilities}

• This PO is about making Informed Choices using engineering knowledge.
Evaluator- PO 2

• As the PO is about application of engineering knowledge,

• Analysis of questions depends very largely on the domain expertise of the Evaluator. Both, tasks as well as problem analysis have to be evaluated for application of engineering knowledge.
An Example for PO 2

- Given for a “Home Assignment”
- Task: Determine Specifications for an Audio amplifier for a dynamic microphone and output for ‘aux” input of a power amplifier.
- One needs to study material (often an appropriate handbook) to figure out meaningful specifications.
- Such an activity would cover most aspects of PO 2
PO-3

PO 3 Design/development of solutions: Design solutions for complex engineering problems \{societal impact\}

• PO-3 examines, if during any design / development tasks issues of its impact on society are addressed?
• Issues could be any of: public health and safety, and the cultural, societal, and environmental considerations.
• Evidence of one or more of these is to be evaluated
Accumulation Σ

- A PO can have contributions from many COs
- Assuming these are in the range of either $(0,1)$ or $(0,4)$; how to calculate the resultant attainment level?
- One good possibility appears to be $\max\{l_i\}$
- No averaging process will work well here.
The Visit is about collecting Evidence, Examining it, making Observations on it, and Finally Drawing conclusions from it!
Some of this detail is needed-attainment of POs
BREAK
Break
1 Contents of Basic Science, Humanities, and Program Specific Courses – Core, Elective

2 Content Delivery

3 Laboratory Work

4 Project Work

Following Questions need to be answered:

What are the COs?

POs Met?

Processes of Development?
Participants in Curriculum Design

More True for Tier-1, But …

• Faculty {Team}
• Industry
• Academics from Peer Institutions {Very Desirable}
• Students and Alumni
• Academic Bodies
Framework

PEO

Program Outcomes

Curriculum & Teaching, Learning

Course Outcomes

1

2

3
Curriculum Design Flow

• Define PEOs
• Place Starting Design alongside NBA’s Program Outcomes.
• Can you cover **All POs** within the Credit Limit Requirements?
• **If Yes, then** Sequencing Requirements? **Else,**
• In a Few iterations a Solution should emerge
Curriculum Design Flow

- Define PEOs
- Place Starting Design alongside NBA’s Program Outcomes.
- Can you cover All POs within the Credit Limit Requirements?
- **If Yes, then** Sequencing Requirements? **Else,**
- In a Few iterations a Solution should emerge

For Evaluators – Records?
Sample Syllabus

Course: Electrical Circuits and Network Theory.
Offered in either 2nd or 3rd semester to students of Electrical Sciences. Credits: (Typical) 3-1-0. Course is Compulsory.
Course Objective: To prepare a student to take courses normally offered in subsequent semesters, like: Electronic Circuits, Signals and Systems, Advanced Electronics, etc.
Syllabus: The circuit concept as an approximation to a physical system \textit{modeling, Application of laws of physics (PO 1)}. Kirchoff’s Laws, voltage and current sources, Network equations, use of source transformations, Loop and Nodal analysis, Matrix representation of circuit equations and their solutions \textit{Apply knowledge of mathematics (PO1)} Continued…
Transient response, solution of differential equations with constant coefficients, initial and final conditions, time constant, its physical significance, and use in solving engineering problems {PO 2 particularly, switching circuits}. Use of Laplace transform in circuit analysis {again PO 1}

Two-port networks, two-port parameters {necessary for all the electronics systems that would follow}, sinusoidal steady state analysis and frequency response

Use of computers for solving large problems {PO 5}

Text books: 1. Van Valkenburg, Network Analysis, 3rd Edition, PHI. {For an 8 credit advanced course}
2. V Del Toro, Electrical Engineering Fundamentals, 2nd Edition {For a 6 credit standard course}

Course Outcomes: PO 1, PO 2, PO 5

Curriculum Design \equiv Jig Saw Puzzle
(with Multiple Solutions)

Qu. Is it difficult? $6^9 = 10077696$
Mathematics, Physics, Basic Engineering Sciences, Humanities, Communication

Core (Compulsory) Electrical Engineering Courses

Type 1 Type 2 Type 3 Type 4

{Electives}

Projects, Internships, Assignments, ..
Some Sample Program Outcomes

• **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and engg. specialization to the solution of complex engineering problems?
Examples

Problems that can not be solved by just direct application of techniques and theorems taught in the course. (Different from most problems at the end of chapters in a typical text book that allow more or less simple and direct approach).
Problems that may or may not have a unique solution. For example, a design problem can be solved in many ways and leads to different solutions. Could require the students to define appropriate constraints/requirements not explicitly mentioned in the problem statement (like: cost, power requirement, life span etc).
Assessment and Evaluation

Qu. What is it that we are trying to assess?

Ans. Have the Graduates qualified for the Profession.

But, we assess the students **continually** as they progress through the program!

So, most of the tools used here can be the ones that we use regularly, like: In-Semester exam, End-Semester exam, Tutorials, Quizzes, Assignments, and (may be) some more.
Assessment

It is one or more processes that identify, collect, and prepare data to evaluate the achievement of Program Outcomes and program educational objectives.
Evaluation

These are processes for interpreting the data and evidence accumulated through assessment practices.

Evaluation determines the extent to which POs or PEOs are being **achieved** and results in decisions and actions to **improve** the program as also for accreditation.
Typical Core Composition for EE

• Mathematics – 4/5 courses
• Physics – 3/4 Courses
• Chemistry 1/2
• Biology (?) ≥ 1
• Humanities and Social Sciences 3/4
Maths: Calculus (1/2), Linear Algebra, Discrete Maths, Complex Variables

Physics: General Physics, Electricity & Magnetism (Adv), Modern Physics,
Relationship: COs and POs

\{	ext{Course Outcomes}\} \rightarrow \{\text{Program Outcomes}\}

How?
NBA’s Program Outcomes

They are interesting!
Curriculum

Curriculum, Assessment and Evaluation are the major tools by which Program Outcomes are attained. We should look at all of these together.

Sections of SAR require available data
There would be a need for the problem to be defined in an appropriate mathematical framework (taking into account any physics required).

In a design problem there would be a need for use of a modern computational tool. For example, in the design of an antenna or a DSP filter.
Qu. Then, what has changed?

Ans. What has changed is: Now, we have to make assessments against the POs that we have declared as creating the required profile of the Graduate. Thus Assessment and Evaluation have to address this new requirement (and that is the Catch).

These new needs influence the constructs of assessment and evaluation tools so that claims of COs and POs can be substantiated.
Typical Assessment Tools

• Mid-Semester and End Semester Examinations**
• Tutorials*
• Home Assignments*
• Project work- Viva-Voce, Seminars etc.
• Employer/Alumni Feedback
• More
If attainment Levels for ALL POs are fine
You are *Through!*
Designing the accreditation Process
Accreditation Model ...

- Modern Trend: **Objectives /Outcomes** (measurable)
- Detailed Evaluation Guidelines – Allows the Institution to **Assess itself** (and Change)
- **Assesses in a two tier system. One more suitable for the autonomous, other for the affiliated**
- Infrastructure part plays a much smaller role
NBA’s Accreditation Process
Based on SAR-
Self Assessment Report
SAR Structure

• **Institutional**: Infrastructure, Finance, Admissions, Governance, Faculty, etc

• **Department/Program Related**

• **Academics**: Curriculum, Teaching & Learning, and Outcomes*
Accreditation Criteria-
On Which, to make the Judgment
Qu. Who decides the Criteria? Accreditation Agency? The Stakeholders?

Ans. The Accreditation Agency with Stakeholder's Interests in View.
Accreditation Process Flow

- Institution- Complete the SAR
- Institution- Evaluate yourself and Bridge Gaps that you find (*Leads to Improvements in the Institution’s Functioning even without...*)
- **Evaluators**- Initial Assessment based on SAR and Observations thereon
- Visit – Judgments Based on Evidence
Curriculum &
Teaching Learning Processes