Evidence for Accreditation: input from Faculty and Student Assessments

Robin King

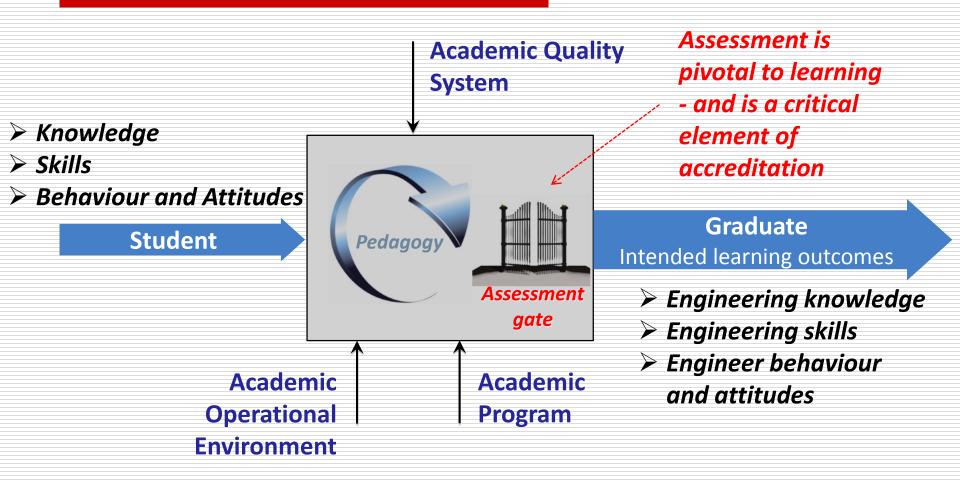
Emeritus Professor, University of South Australia Adjunct Professor, University of Technology Sydney Visit Manager, Engineers Australia Accreditation Centre Consultant to Australian Council of Engineering Deans

Chair, Engineers Australia Accreditation Board (2007-12) Chair, Sydney Accord (2011-15)

Overview: evidence-based accreditation

accreditation criteria and practice

- IEA-ENAEE best-practice exemplar
- Engineers Australia: focus , process, and standards, expectations
- evaluation of self-study document


EA visit expectations and activities

- faculty and program leadership teams
- academic participation
- student and graduate input
- industry stakeholders
- assessed work for demonstrating learning outcomes

issues and questions

- improved assessment of project work
- sharing best practice

model of engineering education (+ accreditation)

Accreditation must evaluate these three elements

IEA-ENAEE best-practice exemplar covers

- <u>nature of the accreditation agency for peer evaluation</u>
- criteria (and standards) for all three elements (environment, program, and quality systems)
- accreditation process should be
 - consistent, fair and robust
 - a transparent process with confidential program evaluation
 - comprehensive across pathways
 - based on pre-visit documentation and
 - evaluation visit student/graduate attainment, all stakeholder input, facilities
 - criterion-referenced for decision making and quality improvement
 - reporting of outcomes and publication of status
- agency <u>capacity</u>, including recruitment and training of evaluation panel members

graduate outcome areas in the IEA Accords

 Kr	owledge-oriented		Skill-oriented Group			
1:	Using engineering knowledge		5: Modern Tool Usage			
	Defined Knowledge Profile for all areas		 9: Individual and teamwork 10: Communication 11: Project/Engineering Management 			
Pr	oblem-solving Skill Group					
2:	Problem analysis Design/development of solutions		Attitude-oriented Group			
3:			6: The Engineer in Society			
4:	Investigations	7: Environment and Sustainability 8: Ethics				
	Range Statements for Problem Solving		12: Life long learning			

- achievement is <u>defined</u> for each outcome in each Accord
- Accord signatories operate accreditation systems that test <u>substantial outcomes equivalence</u> to the Accord "exemplar"
- similar frameworks are defined by ENAEE (EUR-ACE) and CDIO

IEA definition of Complex Engineering Problems

Complex engineering problems cannot be resolved without indepth engineering knowledge, much of which is at, or informed by, the forefront of the professional discipline, and have one or more of the following characteristics:

- involve wide ranging of conflicting technical, engineering and other issues
- have no obvious solution and require abstract thinking, [and] originality in analysis to formulate suitable models
- require research-based knowledge ... informed by practice at the forefront of the discipline ... allows fundamentals-based, first principles analysis
- involve infrequently encountered issues
- are outside coverage of standards and codes of practice for professional engineering
- involve diverse groups of stakeholders with widely varying needs
- have significant consequences in a range of contexts
- are at high level, including many component parts or sub-problems

Engineers Australia accreditation

focuses on two questions:

- Do the educational environment, program and quality systems assure delivery of the <u>Stage 1 competencies (graduate</u> learning outcomes) for the next 5 years?
- Is the range and depth of technical competence appropriate to the named discipline specialisation?
- a holistic peer judgement (rather than audit) of compliance with accreditation criteria in three areas:
 - operating environment (6 criteria) leadership, staffing, ...
 - ❑ the academic program (5) program target outcomes, …
 - quality systems (10) industry input, assessment, ...
- accreditation process and outcomes
 - pre-visit scrutiny of Faculty documentation and follow up
 - 3-day evaluation visit
 - recommendations on accreditation (and conditions)
 - commendations, and recommendations for improvement

EA Stage 1 Competency Standards

- contextual role statement (of mature professional)
- □ 16 <u>elements</u> of competency for <u>entry to practice</u>
 - knowledge and skills base (6)
 - engineering application ability (4)
 - personal and professional attributes (6)
- consistent with IEA graduate attribute exemplars
- each element is elaborated with "indicators of attainment"
- the Standard is used for
 - individual assessment (of graduates of non-Accord recognised programs)
 - program design (by educators)
 - program accreditation (by evaluators)

EA Stage 1 Competency Standard for Professional Engineer

Units of Competency	Elements of Competency (Professional Engineer)					
1 Knowledge & Skill Base	1.1 Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.					
	1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences whic underpin the engineering discipline.					
	1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline.					
	1.4 Discernment of knowledge development and research direction within the engineering discipline.					
	1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline.					
	1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline.					

Units of Competency	Elements of Competency (Professional Engineer)			
	2.1	Application of established engineering methods to complex engineering problem solving.		
2 Engineering Application Ability	2.2	Fluent application of engineering techniques, tools and		
		resources.		
	2.3	Application of systematic engineering synthesis and design processes.		
	2.4	Application of systematic approaches to the conduct and management of engineering projects.		
	3.1	Ethical conduct and professional accountability		
3 Professional and Personal	3.2	Effective oral and written communication in professional and lay domains.		
Attributes	3.3	Creative, innovative and pro-active demeanour.		
	3.4	Professional use and management of information.		
	3.5	Orderly management of self and professional conduct.		
	3.6	Effective team membership and team leadership.		

indicators of attainment (action oriented evidence)

2.1 Application of established engineering methods to *complex* engineering problem solving.

- a) Identifies, discerns and characterises salient issues, determines and analyses causes and effects, justifies and applies appropriate simplifying assumptions, predicts performance and behaviour, synthesises solution strategies and develops substantiated conclusions.
- b) **Ensures** that all aspects of an engineering activity are soundly based on fundamental principles by diagnosing, and taking appropriate action with data, calculations, results, proposals, processes, practices, and documented information that may be ill-founded, illogical, erroneous, unreliable or unrealistic.
- c) **Competently** addresses engineering problems involving uncertainty, ambiguity, imprecise information and wide-ranging and sometimes conflicting technical and non-technical factors.
- d) **Investigates** complex problems using research-based knowledge and research methods.
- e) **Partitions** problems, processes or systems into manageable elements for the purposes of analysis, modelling or design and then **re-combines** to form a whole, with the integrity and performance of the overall system as the paramount consideration.
- f) **Conceptualises** alternative engineering approaches and **evaluates** potential outcomes against appropriate criteria to justify an optimal solution choice.
- g) **Critically reviews and applies** relevant standards and codes of practice underpinning the engineering discipline and nominated specialisations.
- h) **Identifies, quantifies, mitigates and manages** technical, health, environmental, safety and other contextual risks associated with engineering application in the designated engineering discipline.
- i) **Interprets and applies** legislative and statutory requirements applicable to the engineering discipline.

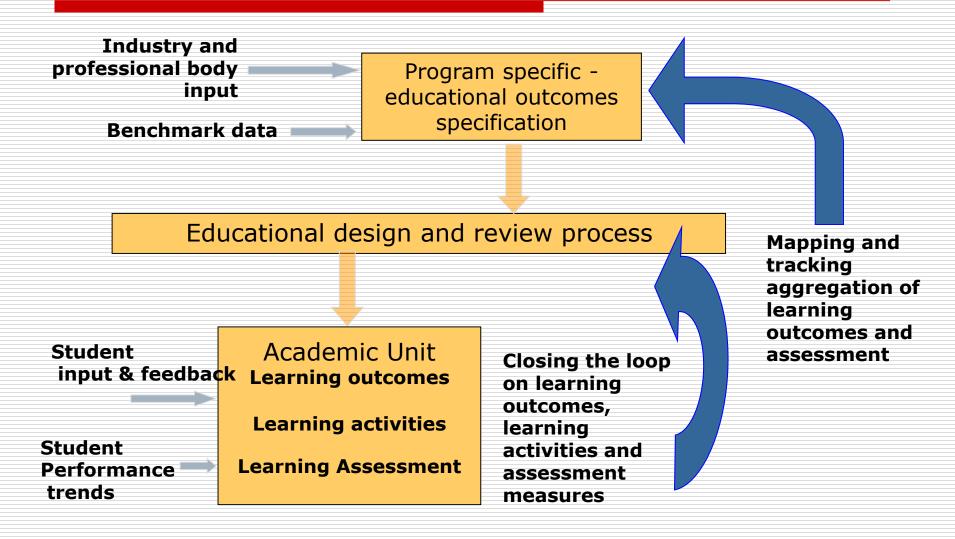
EA expects to see mapping of target outcomes

assigning a target level of attainment (e.g. 0 – 5) to each graduate attribute for each program unit provides a good way of <u>developing</u> the outcomes, choosing <u>pedagogy</u> and aligning <u>assessment tasks</u>

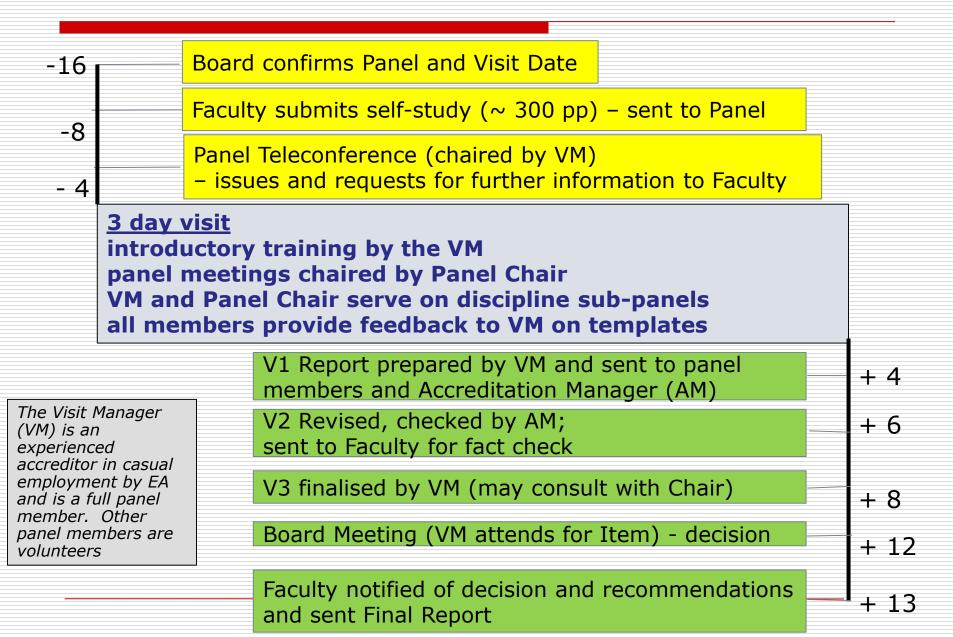
Prgram Unit (examples)	maths & science	engin'g spec'n	engin' method	engin'g tools	synth & design	comm'i cation	team- work	
Maths 1	1	1	1	1	0	0	0	
Mechanics 1	2	2	1	1	0	1	1	
Systems 1	2	2	2	2	1	0	0	
Design 2	0	0	2	3	3	2	3	
Project Man'g	0	1	1	2	3	3	3	
Capstone project	2	4	4	4	4	4	0	
program target	3	4	4	4	4	4	4	

example levels: 0 – none, 1 – basic, 2 – developed, 3 - competent / fluent 4 – professional / complex, 5 – advanced (postgraduate)

elaboration into course unit targets, teaching activities and assessment


used for peer review, refinement, approval

							· ·	r <mark>om p</mark>	· · · · ·				
	Faculty Gradua	te Cap	ability	Assess this su		Level of instruction Please mark only ONE box if the FGC is assessed in this subject							
	Writing	🛛 Yes 🗌 No			Introduction 🛛 Reinforcement 🗌 Extension/Expansi	Ūr	it lea	arnin	g Outcomes				
2	Speaking			Itcome	e and	Teaching and Learning Activities for this	Subject				goucomes		
3	Inquin/repears						from this subject? Please list and provide examples of T		ing activities that				
4	Critical thinkin	migh		neasure the			e learning outcomes must address any Graduate Capab				Teaching and		
5	Creative proble		Subject Intended Lea Outcomes (ILOs						Aligned to which FGC(s)?		21	Learning	
5	Team work	1		uccessful completion t, students will be able		n of the Lectures and practical classes. In lectures st						Activities	
7	Quatitative liter						will be instructed in molecular interact information transfer and the synthesis			Activities			
B	Ethical Awarer conduct		demonstrate their knowle understanding of the stru- functions of biological macromolecules by writte descriptions and answeri		e strui cal writte	2	Assessment element	Percentage	Included in these Instance(s) (enter #(s))	Central exam required?	Subject ILO(s) to be assessed in this element		
			choice qu	and a second second second second		1	Practical class assignments	5%	1	🗆 Yes 🖾 No	1, 2, 4, 6		
		2	2	Explain he are regula by written	ated to ach	level	2	Two practical reports equivalent to 1000- words each	25%	1	□Yes ⊠No	1, 2, 3, 4, 5, 6	
				ultiple choice question		3	Four 10-minute tests	15%	1	🗆 Yes 🖾 No	1,2	<u> </u>	
						4	One 3-hour end-of-semester examination	55%	1	🛛 Yes 🗌 No	1,2, 3, 4, 6		
		1	B		·	5	Entertext	Enter %	Enternumber	□Yes □No	Enternumber	Assessm	
						6	Entertext	Enter %	Enternumber	□Yes □No	Enter number	/ 0000011	
					[7	Entertext	Enter %	Enternumber	□Yes □No	Enternumber		
						8	Entertext	Enter %	Enternumber	Yes No	Enternumber		


courtesy: Australian Council of Deans of Science

Assessment

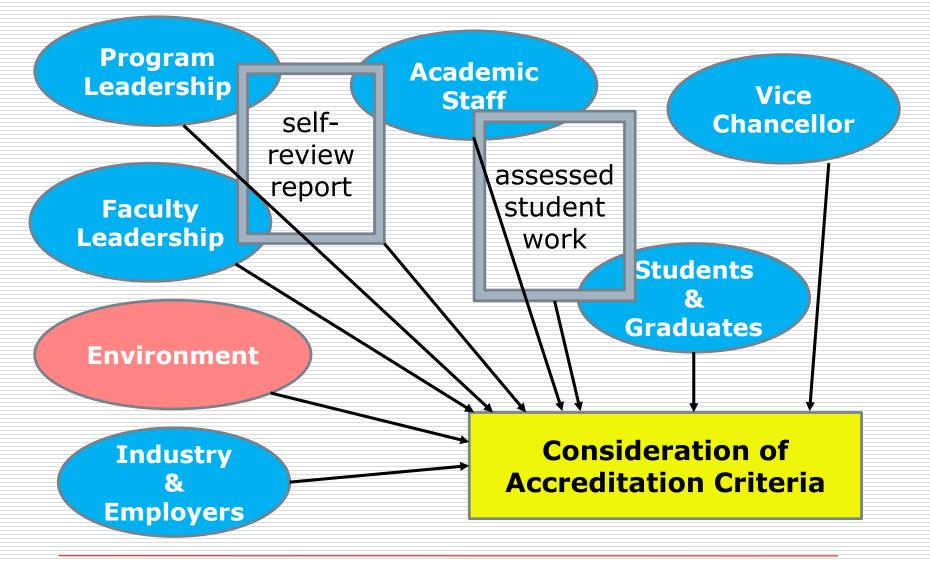
EA expects industry and student input to outcomes-based education design and delivery

Accreditation Timeline (weeks)

Faculty self-study documentation and Panel T/C

- Iocal context and future directions
- facts and figures on enrolments and graduations
- responses to <u>previous</u> recommendations
- addresses the 21 accreditation criteria at the program level (including target outcome mappings)
- includes appendices and links to
 - course guides (as provided to students)
 - staff profiles, student survey data, ...
 - industry committee minutes, university/faculty policies, ...
 - marketing material, ...
- Panel Teleconference
 - identifies issues of concern
 - makes request for further information
 - confirms list of materials to be available for inspection

materials to be available at the panel visit


course materials

- lecture notes, tutorial worksheets, laboratory instructions
- assessment items with model solutions
- samples of assessed student work for each course
 - at pass, credit and distinction levels
- samples of assessed capstone project work (report)
 - at pass, credit and distinction levels
- samples of students' industry training reports
- samples of students' formative portfolios
 - e.g. reflective journal
- minutes of industry liaison committees
- minutes of staff-student committees
- program marketing brochures

Typical Visit Schedule (over 3 days)

	Panel Session: orientation and training									
	Meeting with Faculty Leadership Team									
	Meetings with	Meetings with Program Leadership (each major discipline in turn)								
	Pane	Panel Session: inspection of student work ,etc.								
	Electrical Eng.Civil Eng.Mechanical Eng.Chemical Eng.Staff MeetingStaff MeetingStaff MeetingStaff MeetingStaff MeetingStudent MeetingStudent MeetingStudent MeetingStudent Meeting									
	Panel Session: inspection of student work, etc.									
	Meetings with Stakeholders (graduates and employers) Meetings with University Leadership (VC, DVC)									
	Electrical Eng. FacilitiesCivil Eng. FacilitiesMechanical Eng. FacilitiesChemical Eng. 									
	Panel Session: inspection of student work, etc. discussions on key findings									
	follow up on additional information with key individuals/groups									
	Panel Session: finalisation of key recommendations									
	Debriefing to Faculty Leadership Team									
_										

focus of the panel visit is to <u>triangulate</u> input on each of the accreditation criteria

WOSA 2016 R W King

obtaining the evidence

on the educational <u>culture</u> of the faculty or school

- leadership of education
- engagement of academics and stakeholders
- how students are treated
- how policies are implemented
- oOn the quality and range of facilities

input from graduates and students is most critical

- only <u>graduates</u> experience the whole program
- range and quality of assessed work
- range and quality of their responses to questions

employers give evidence of quality and involvement on engineering practice and employability

WOSA 2016 R W King

obtaining the evidence

teaching academics* demonstrate engagement with education processes, and students, and the operation of policies

input from Vice Chancellor demonstrates <u>university</u> <u>commitment</u> to engineering and education

leadership teams can answer questions from the documentation and arising from the teleconference

we aim to see academic* staff without their Head of Department or School present

sample lead questions to students and graduates

- 1. Do you know the range of attributes and skills that EA expects ?
- 2. Has the program delivered on these attributes and your expectations?
- 3. How do you rate the overall quality across the units you have done?
- What were your concerns within the learning units assessment feedback?
- 5. Do you solve problems and do projects that are complex and openended ?
- 6. How do you rate the exposure to professional practice?
- 7. Do you write personal reflections on your learning?
- 8. Do your teachers have a cohesive and consistent approach to delivering learning activities across the program units?
- 9. How do you regard the technical breadth and depth across the program?
- 10. In team-based units do you take a range of team roles such as team leader? **Do you get fair individual assessment in teamwork?**
- 11. Are the facilities adequate to achieve the unit goals?
- 12. How were issues of ethics, environmental awareness and sustainable practices in engineering addressed?
- 13. How did you and your class provide feedback to the Faculty and School?
- 14. Overall: Are you generally satisfied with the education you have received ?

sample lead questions to teaching academics

- 1. What induction and educational development courses are you required/able to undertake?
- 2. How well does the workload model work for you?
- 3. How are you involved with overall program design and redesign?
- 4. How do your units fit into delivery of the overall target graduate outcomes? How do you cover complex problem solving?
- 5. Do your units include input from industry practice?
- 6. What changes and for what reasons have you made to your teaching in recent years? How do students know about improvements?
- 7. How are assessment tasks checked and/or moderated?

8. How do you manage student (inc. team) assessment?

9. How are final year capstone projects assessed across targets?

- 10. Are students attending your classes? Are there systems to support students who are not progressing well in your unit?
- 11. Do you benchmark your teaching practice in any way?
- 12. How adequate are facilities for your teaching needs?
- 13. What changes would you like to see?
- 14. Is the School/Faculty a good place to work?

sample lead questions to leadership teams

- 1. How is the curriculum designed and reviewed? How are program target outcomes determined? Who does the unit outcomes to overall outcome mappings? How are these used for making quality improvements?
- 2. How is the EA requirement for 'exposure to industry practice' ensured?
- 3. What are the policies and practices on academic workload/performance management, professional development, recruitment, guest lecturers ...
- 4. How are teaching functions and academic leadership nurtured and supported?
- 5. Is funding adequate: how are facilities renewed; contemporary software acquired, etc.?
- 6. How are student entry standards maintained, and students-at-risk supported?

7. How are student assessment items validated and moderated?

- 8. What has been learned from student/graduate surveys and other student input?
- 9. How is input from employers and industry obtained and used?
- 10. What Faculty/School/Program benchmarking is undertaken?
- 11. Is the School/Faculty/Program achieving its goals; and what improvements are in hand?

WOSA 2016 R W King

sample lead questions to industry / employers

- 1. How are you involved with the Faculty/School?
- Is your advice (eg to the Industry Advisory Committee) valued and used by the Faculty/School? Do you feel part of their quality and improvement system?
- 3. How are you/your firm involved with teaching and students? Do you provide guest lectures, placements, project topics, etc. Are you involved in student assessment?
- 4. How do you rate the capabilities of the students and graduates you encounter? What are their strengths and weaknesses?
- 5. What improvements would you like to see?

panels find that students and graduates express competences in meetings and individual conversations more clearly than in their assessed work

educators need to improve assessment practices and change pedagogy to match

(reference my WOSA presentation)

inspection of assessed work – examples and comments

- taught units marked
 - quizzes and laboratory reports, examination papers
 - may demonstrate <u>mastery</u> of basics
 - may <u>not</u> cover all material and all target outcomes
- team-based design/project work
 - reports specification, project management, design drawings, software simulations, etc.
 - presentation (powerpoint)
 - model artefact /demonstration software
 - assessment spreadsheet (ideally with moderated peerassessments)
 - may demonstrate coverage of <u>many</u> target outcomes
 - may <u>not</u> demonstrate <u>mastery</u> of science areas

inspection of assessed work – examples and comments

- individual capstone project work (research/design)
 - reports (multiple) covering problem specification, research, analysis, synthesis, evaluation, some project management
 - assessment spreadsheet
 - may demonstrate coverage of <u>several</u> target outcomes, including <u>complexity</u>
 - may <u>not</u> adequately demonstrate <u>some</u> attained outcomes

assessed learning portfolios

- especially for problem-based learning and project work, can capture outcomes as they are attained
- need very good rubrics to describe levels of attainment
- may provide evidence for attainment of <u>all</u> target outcomes

WOSA 2016 R W King

increased use of projects was endorsed at the IEA Workshop 6, Wellington 2014

most delegations agreed that team- and individual- design oriented project work with multi-disciplinary features will cover most of the graduate attributes

in designing and assessing project work, <u>educators</u> must ensure:

- overall specifications and learning outcomes are clear
- supervisors (of specific projects) know and adopt these
- areas of complexity are adequately covered
- project topics/content/tools should be authentic to practice
- reporting requirements are staged (for formative learning)
- summative assessment has clear rubrics (for guidance)
- good project management practice is introduced
- teamwork should be well managed and assessed

ideally, accreditation panels should see all of these elements

Australian directions ...

- Work Integrated Learning (WIL) to put <u>engineering practice</u> at the centre of engineering degrees
 - Best Practice Guidelines (Aust. Council of Engineering Deans)
 - "Virtual WIL" to overcome the problems of industry placements
- a national project in Australia has developed Guidelines for Best Practice in BEng(Hons) capstone projects:
 - curriculum clear outcome and process specifications
 - supervision focus on mentoring to the student outcomes , with formative feedback
 - assessment clear rubrics and examples
 - collaborative benchmarking between other supervisors

increased use student "reflective portfolios"

going beyond a 'journal/diary'

Conclusions

- robust outcomes-based accreditation requires <u>trust and</u> <u>respect</u> between the faculty and the accrediting panel, as a partnership for <u>quality improvement</u>
- the faculty must supply good (self-study) <u>documentation</u> addressing the criteria, and (random) <u>samples of student work</u>
- the accreditation panel must be able to gain <u>honest input</u> form students and graduates, teachers, program leaders and employers, to <u>triangulate evidence</u> and draw conclusions
- the moves towards <u>increasing project work</u> demands more staff training - so that students reliably attain the target range of learning outcomes, with appropriate assessment
- the use of <u>student-reflective portfolios</u> will also increase the reliability of future accreditation processes

References

ENAEE – IEA (2015) *Best Practice in Accreditation of Engineering Programmes: an exemplar*. <u>http://www.ieagreements.org/Best_Prct_Full_Doc.pdf?6299</u>

International Engineering Alliance (2013). *Graduate Attributes and Professional Competencies v3*. see <u>www.ieagreements.org</u>

E Crawley et al. (2011), CDIO Syllabus v.2. www.cdio.org

S Male and R King (2014). *Best Practice Guidelines for Effective Industry Engagement in Engineering Degrees.* Australian Council of Engineering Deans <u>http://www.engineersaustralia.org.au/sites/default/files/shado/ACED/aced_ind</u> <u>ustry_engagement_guidelines.pdf</u>

See also references in WOSA 2016 paper:

Robin King: Specification and Assessment of Outcomes-based Engineering Curricula for Program Accreditation